上海西门子电源一级总代理
1.6 开关电源技术的发展趋势
开关电源正向高频化、高功率密度、高功率因数、高效率、高可靠性、标准化方向发展。
1.高功率因数模块电源则以国际工业标准1/4砖、半砖或砖式结构为主。标准化的管脚给设计师和使用者都带来了即插即用的便利,使设计师能够方便地完成产品的设计,利于电源升级。
有源功率因数校正(APFC)的开发,提高了AC/DC开关电源的功率因数,既治理了电网的谐波污染,又提高了开关电源的整体效率。极管通常也必须降额使用。
(2)反向重复峰值电压URRM 指对二极管所能重复施加的反向高峰值电压,通常是其雪崩击穿电压的2/3。电导调制效应起作用需一定的时间来储存大量少子,达到稳态导通前管压降较大,正向电流的上升会因器件自身的电感而产生较大压降。电流上升率越大,UFP越高。
2.1.3 二极管的主要类型
二极管在开关电源中有大量应用,按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复特性的不同,在应用时应根据不同场合的不同要求,选择不同类型的二极管。常用的二极管可以分为以下三类:
(1)普通二极管 普通二极管又称整流二极管,多用于开关频率不高(1kHz以下)的整流电路中。其反向恢复时间较长,一般在5μs以上,在参数表中甚至不列出这一参数,这在开关频率不高时并不重要。但其正向压降低,正向电流定额和反向电压定额可以达到很高,分别可达数千安和数千伏以上。
(2)快恢复二极管(Fast Recovery Diode,FRD) 反向恢复过程很短(5μs以下)的二极管,也简称快速二极管。工艺上多采用了掺金措施,结构上有的采用PN结型结构,有的采用改进的PiN结构。其正向压降高于普通二极管(1~2V变换器也是正输出变换器,即输出电压极性和输入电压相同。左右),反向耐压多在1200V以下。从性能上可分为快速恢复和超快速恢
复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。源和正激变换器,实际上是在Buck降压变换器中加入隔离变压器构成的激变换器的电感是耦合电感,对变推挽变换器是由推挽逆变器和输出整流器、低通滤波器构成的。推挽逆变器将直流电能转换成交流电能,输出整流器和滤波器,再将交流电能转换成直流电能,所以推挽变换器属于直流—交流—直流变换器。由于直流—交流变换器提高了工作频率,所以变压器和输出滤波器的体积重量都可以减小。侧是推挽逆变电路,右侧是整流、滤波电路。为了减小整流电路的通态损耗,在应用于输出电压较低的场合时采用了全波整流电路。而应用于输出电压较高的场合时,则可以采用全桥整流电路,以降低整流管的电压定额。图中采用的是全波整流电路,其中Lf是输出滤波电感,Cf是输出滤波电容。推挽变换器可以看成是两个正激变换器的组合。这两个正激变换器的开关管轮流导通,故变压器的铁芯是交变磁化的。全波整流电路变压器的次面介绍的推挽变换器,开关管的电压是电源电压的两倍,因此适用于电源电压较低的场合。半桥变换器则不同,开关管承受的反向电压为电源电压,故可以适用于电源电压较高的场合。半桥变换器,是由半桥逆变器、高频变压器、输出整流器和直流滤波器组成的,因此也属于直流—交流—直流变换器即发光二极管,它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。LED被称为第四代照明光源,即21世纪的绿色、节能光源,具有光效高(50~200Lm/W,电光功率转换接近)、工作电压低(单管驱动电压为1.5~3.5V)、耗电量小(单管功率为0.03~0.06W)、体积小(单元晶片尺寸为3~5mm的正方形)、结构坚固且寿命长(理论寿命达10万小时)等特点;LED光源本身不含汞、铅等有害物质,无红外和紫外污染,不会在生产和使用中产生对外界的污染。因此,LED光源具有节能、环保、寿命长、免维护、易控制等特点,与传统的白炽灯、荧光灯光源相比,有着无可比拟的优越性,是光源领域发展的必然趋势。磷化镓芯片(一个红色另一个是绿色)能够发出黄色光。就在此时,俄国科学家利用金刚砂制造出发出黄光的LED。尽管它不如欧洲的LED高效,但在20世纪70年代末,它能发出纯绿色的光。
20世纪80年代早期到中期对砷化镓、磷化铝的使用,使得代高亮度的LED诞生,先是红色,接着就是黄色,后为绿色。到20世纪90年代早期,采用铟铝磷化镓生产出了橘红、橙、黄和绿光的LED。个有历史意义的蓝光LED也出现在20世纪90年代早期,再一次利用金刚砂——早期的半导体光源的障碍物。依当今的技术标准去衡量,它与俄国以前的黄光LED一样光源暗淡。
浔之漫智控技术(上海)有限公司(xzm-wqy-sqw)
是中国西门子的合作伙伴,公司主要从事工业自动化产品的集成,销售和维修,是全国的自动化设备公司。
公司坐落于中国城市上海市,我们真诚的希望在器件的销售和工程项目承接、系统开发上能和贵司开展多方面合作。
以下是我司主要代理西门子产品,欢迎您来电来函咨询,我们将为您提供优惠的价格及快捷细致的服务!
20世纪90年代中期,出现了超亮度的氮化镓LED,随即又制造出能产生高强度的绿光和蓝光铟氮镓LED。超亮度蓝光芯片是白光LED的核心,在这个发光芯片上抹上荧光磷,然后荧光磷通过吸收来自芯片上的蓝色光源再转化为白光,就是利用这种技术制造出任何可见颜色的光。在LED市场上就能看到生产出来的新奇颜色,如浅绿色和粉红色。有科学思想的读者到现在可能会意识到LED的发展经历了一个漫长而又曲折的历史过程。事实上,近开发的LED不仅能发射出纯紫外光,而且还能发射出真实的“黑色”紫外光。那么LED发展史到底能走多远,不得而知。也许某天就能开发出能发出X射线的LED。早期的LED只能应用于指示灯、早期的计算器显示屏和数码手表。而现在开始出现在超亮度的领域。并将会在接下来的一段时间内继续下去。2.LED产业概况具有256级灰度并任意混合,即可产生256×256×256=16777216种颜色,形成不同光色的组合变化多端,实现丰富多彩的动态变化效果及各种图像。
(4)利环保:环保效益更佳,光谱中没有紫外线和红外线,既没有热量,也没有辐射,眩光小,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。
(5)高新尖:与传统光源单调的发光效果相比,LED光源是低压微电子产品,成功融合了计算机技术、网络通信技术、图像处理技术、嵌入式控制技术等,所以也是数字信息化产品,是半导体光电器件“高新尖”技术,具有在线编程、无限升级、灵活多变的特点。5.LED技术需注意的问题
(1)降低LED灯的成本
LED芯片占据LED灯成本的主要部分,因而降低LED成本的主要途径就是降低LED芯片的成本。LED芯片技术发展的关键在于基底材料和外延生长技术。基底材料由传统的蓝宝石材料、硅和碳化硅,发展到氧化锌、氮化镓等新材料。在短短数年内,借助于包括芯片结构、表面粗化处理和多量子阱结构设计在内的一系列技术改进,LED在光效方面实现了巨大突破。
硅基底成本很低,技术在不断进步中,但目前发光效率还不满意,如果保持这种发展速度,一旦达到较高水平,则硅基底成为主要的技术方案成为必然的选择,企业也将获得巨大的经济回报。
(2)提高LED灯的显色性控制和驱动:使用电子电路实现LED的恒流驱动和控制。
③ 热管理:若要达到更长的使用寿命必须控制LED节点温度。散热模型计算与新材料新工艺的运用是LED灯技术热点。
④ 光学元件:透镜、反射器或导光板材料是将光线聚焦在目标区域或分散在四周,这要根据设计需求而定。
随着LED技术的快速发展,以及LED光效的逐步提高,LED灯的应用将越来越广泛。特别是随着全球性能源短缺问题的日益严重,LED灯将是取代白炽灯、钨丝灯和荧光灯的必然选择。此外,在室内灯具设计方面,LED将趋向智能化、多样化和艺术化。所以在大力发展LED技术的时候,必须对上述问题深入研究,一一解决出现的各种问题。汽车部分:以汽车內装使用包括了仪表板、音箱等指示灯,以及汽车外部(第三刹车灯、左右尾灯、方向灯等)。目前欧洲系列车种包括奥迪、宝马、福斯等品牌全系列采用高亮度LED,而车厂中,丰田汽车也率先将仪表板的背光板换成高亮度LED,其他各车厂新车,也在陆续采用。若再加上前后车灯、刹车灯,交通标志等,与交通有关的市场,商机非常庞大。在交通标志灯市场方面,全球约有2000万座交通标志灯,若每年更新200万座,商机可延续10年。应用于汽车的LED如图1-4所示。
(2)背光源部分:主要是手机背光源方面,是SMD型产品应用的大市场。虽然近两年手机的增长速度已明显趋缓,但全年仍有4亿部水准,以1部手机需要LED背光源2颗、按键6颗SMD LED计算,一年保守4亿部手机需要约32亿颗LED。近韩国蓝色背光手机风潮,使蓝光LED的市场供不应求。显而易见,手机在LED应用市场中仍占有举足轻重的地位。继蓝光手机后,目前市场已是彩屏手机的天下。以往彩屏手机是极高端产品,不过今年主要零组件价格下滑,使得彩屏手机和单色手机的价差缩小,加上厂商的大力促销,手机的换型潮悄然发生。LED应用产品特别是半导体照明产品的主要配套件,如驱动电路、支架、灯具、灯管、接插件、塑料件和金属件等,国内的配套能力比较强。在LED应用产品的关键配套LED驱动集成电路方面,目前已有士兰微、中电18所、量(发光量)与输入电能之比,即发光效率,也称光源的流明效率,单位是Lm/W。品质优良的LED要求向外辐射的光能量大,向外发出的光尽可能多,即外部效率要高。事实上