浔之漫智控技术(上海)有限公司
主营产品或服务:西门子PLC , 西门子变频器 , 西门子数控系统
上海西门子伺服电机一级代理商
观看上海西门子伺服电机一级代理商视频:

上海西门子伺服电机一级代理商

浔之漫智控技术(上海)有限公司(xzm-wqy-sqw)是中国西门子的合作伙伴,公司主要从事工业自动化产品的集成,销售和维修,是全国的自动化设备公司。公司坐落于中国城市上海市,我们真诚的希望在器件的销售和工程项目承接、系统开发上能和贵司开展多方面合作。以下是我司主要代理西门子产品,欢迎您来电来函咨询,我们将为您提供优惠的价格及快捷细致的服务!

电器是经得起电动机启动电流冲击而不动作的。只有在电动机长时间过载下FR才动作,断开控制电路,使接触器断电释放,电动机停止旋转,实现电动机过载保护。

c.欠压保护与失压保护是依靠接触器本身的电磁机构来实现的。当电源电压由于某种原因而严重欠压或失压时,接触器的衔铁自行释放,电动机停止旋转。而当电源电压恢复正常时,接触器线圈也不能自动通电,只有在操作人员再次按下启动按钮SB2后电动机才会启动,这又叫零压保护。

控制线路具备了欠压和失压保护能力之后,有如下三个方面的优点:

第一,防止电压严重下降时电动机低压运行。

第二,避免电动机同时启动而造成的电网电压严重下降。

第三,防止电源电压恢复时,电动机突然启动运转造成设备和人身事故。

2.4.2 电动机的点动控制线路,当按下点动启动按钮SB时,接触器KM通电吸合,主触点闭合,电动机接通电源。当手松开按钮时,接触器KM断开释放,主触点断开,电动机被切断电源而停止旋转。

② 带手动开关SA的点动控制线路 )所示,当需要点动时将开关SA打开,操作SB2即可实现点动控制。当需要连续工作时合上SA,将自锁触点接入,即可实现连续控制。

③ 利用复合按钮实现点动的控制线路 所示。点动控制时,按下点动按钮SB3,其常闭触点先断开自锁电路,常开触点后闭合,接下来接通启动控制电路,KM线圈通电,主触点闭合,电动机启动旋转

上海西门子伺服电机一级代理商

而SQ2放在右端需要反向的位置,机械挡铁要装在运动部件上。启动时,利用正向或反向启动按钮,如按正转按钮SB2,KM1通电吸合并自锁,电动机作正向旋转带动机床运动部件左移,当运动部件移至左端并碰到SQ1时,将SQ1压下,其常闭触点断开,切断KM1接触器线圈电路,同时其常开触点闭合,接通反转接触器KM2线圈电路,此时电动机由正向旋转变为反向旋转,带动运动部件向右移动,直到压下SQ2限位开关,电动机由反转又变成正转,这样驱动部件进行往复的循环运动。

由上述控制情况可以看出,运动部件每经过一个自动往复循环,电动机要进行两次反接制动过程,将出现较大的反接制动电流和机械冲击。因此,这种线路只适用于容量较小、循环周期较长、电动机转轴具有足够刚性的拖动系统中。另外,在选择接触器容量时应比一般情况下选择的容量大一些。

利用限位开关除了可实现往复循环之外,还可实现控制进给运动到预定点后自动停止的限位保护等电路,其应用相当广泛。

2.5 三相异步电动机的制动控制

三相异步电动机从切除电源到完全停止旋转,由于惯性的关系,总要经过一段时间,这往往不能适应某些生产机械工艺的要求。如**铣床、卧式镗床、组合机床等,无论是从提高生产效率,还是从安全及准确停车等方面考虑,都要求电动机能迅速停车,要求对电动机进行制动控制。制动方法一般有两大类:机械制动和电气制动。机械制动是用机械装置来强迫电动机迅速停车;电气制动实质上是在电动机停车时,产生一个与原来旋转方向相反的制动转矩,迫使电动机转速迅速下降。下面我们着重介绍电气制动控制线路,它包括反接制动和能耗制动。

上海西门子伺服电机一级代理商

利用改变电动机电源的相序,使定子绕组产生相反方向的旋转磁场,因而产生制动转矩的一种制动方法。

由于反接制动时,转子与旋转磁场的相对速度接近于两倍的同步转速,定子绕组中流过的反接制动电流相当于全电压直接启动时电流的两倍,因此反接制动特点之一是制动迅速,效果好,冲击大,通常仅用于10kW以下的小容量电动机。为了减小冲击电流,通常要求在电动机主电路中串接一定的电阻以限制反接制动电流,这个电阻称为反接制动电阻。反接制动电阻的接线方法有对称和不对称两种接法,显然采用对称电阻接法可以在限制制动转矩的同时,也限制了制动电流,而采用不对称制动电阻的接法,只是限制了制动转矩,未加制动电阻的那一相,仍具有较大的电流。反接,速度继电器KS的常开触点闭合,为反接制动做好了准备。停车时,按下停止按钮SB1,其常闭触点断开,接触器KM1线圈断电,电动机M脱离电源,由于此时电动机的惯性还很高,KS的常开触点依然处于闭合状态,所以SB1常开触点闭合时,反接制动接触器KM2的线圈通电并自锁,其主触点闭合,使电动机定子绕组得到与正常运转相序相反的三相交流电源,电动机进入反接制动状态,使电动机转速迅速下降,当电动机转速接近于零时,速度继电器常开触点复位,接触器KM2线圈电路被切断,反接制动结束。

2.5.2 能耗制动控制线路

所谓能耗制动,就是在电动机脱离三相交流电源之后,定子速度原则控制的能耗制动控制线路。该线路与图2-9所示的控制线路基本相同,这里仅是控制电主电路中有四台电动机。M1是主轴电动机,带动主轴旋转和使主轴作轴向进给运动,作单方向旋转。M2是摇臂升降电动机,可作正反向运行。M3是液压泵电动机,其作用是供

路中的过载元件FR1动作,使其位于14区的常闭触点FR1断开,同样也使KM1的线圈失电,电动机M1停转。

② 摇臂升降电动机M2的控制

a.摇臂升降的启动原理 按上升(或下降)按钮SB3(或SB4),时间继电器KT得电吸合,位于19区的KT常开触点和位于23区的延时断开常开触点闭合,接触器KM4和电磁铁YA同时得电,液压泵电动机M3旋转,进给压力油,推动活塞和菱形块,使摇臂松开(如图3-3所示)。松开到位压限位开关SQ2,位于19区的SQ2的常闭触点断开,接触器KM4断电释放,电动机M3停转。同时位于17区的SQ2常开触点闭合,接触器KM2(或KM3)得电吸合,摇臂升降电动机M2摇臂升降的停止原理 当摇臂上升(或下降)到所需位置时,松开按钮SB3(或SB4),接触器KM2(或KM3)和时间继电器KT失电,M2停转,摇臂停止升降。位于21区的KT动断触点经1~3s延时后闭合,使接触器KM5得电吸合,电动机M3反转,供给压力油。摇臂夹紧后,位于21区的压限位开关SQ3常闭触点断开,使接触器KM5和电磁铁YA失电,YA复位,液压泵电动机M停转。摇臂升降结束。

c.摇臂升降中各器件的作用 限位开关SQ2及SQ3用来检查摇臂是否松开或夹紧,如果摇臂没有松开,位于17区的SQ2常开触点就不能闭合,因而控制摇臂上升或下降的KM2或KM3就不能吸合,摇臂就不会上升或下降。SQ3应调整到保证夹紧后能够动作,否则会使液压泵电动机M3处于长时间过载运行状态。时间继电器KT的作用是保证升降电动机断开并完全停止旋转(摇臂完全停止升降)后才能夹紧。限位开关SQ1是摇臂上升或下降至极限位置的保护开关。SQ1与一般限位开关不同,其两组常闭触点不同时动作。当摇臂升至上限位时,位于17区的SQ1动作,接触器KM2失电,升降电动机M2停转,上升运动停止。但是位于18区的SQ1另一组触点仍保持闭合,所以可按下降按钮SB4,接触器KM3动作,控制摇臂升降电动机M2反向旋转,摇臂下降。反之,当摇臂在下极限位置时,控制过程类似。

③ 主轴箱与立柱的夹紧与放松 立柱与主轴箱均采


展开全文