6ES7223-3AD30-OXBO
6ES7223-3AD30-OXBO
浔之漫智控技术(上海)有限公司(xzm-wqy-shqw)
是中国西门子的佳合作伙伴,公司主要从事工业自动化产品的集成,销售和维修,是全国的自动化设备公司之一。
公司坐落于中国城市上海市,我们真诚的希望在器件的销售和工程项目承接、系统开发上能和贵司开展多方面合作。
以下是我司主要代理西门子产品,欢迎您来电来函咨询,我们将为您提供优惠的价格及快捷细致的服务!
我们不只需要理解特定证据的价值和局限性,也要了解不同形式的证据如何比较,以及他们如何能相互组合来补偿各自的局限性。既然实验和调查有局限性,而且我们对基于现实世界经验的评估感兴趣,也许仔细深入地观察一到两个实施案例会提供我们做决定所需要的信息,或者至少把我们的注意力聚焦在我们先需要回答的问题上。引人的结果,如果它是通过盯着水晶球看出来的,那也不会有可信度。以下的研究结果一定很吸引人:“600人参与的实证研究显示Java在各个方面都比C++好:编程时间缩短了11%,调试时间缩短了47%,长期设计稳定度提高了42%。只有在运行性能上,C++仍高出Java 23%。”
但如果你知道这些结果是通过问卷调查而得出的话,那可信度就大打折扣了。如果你仔细查看问题的话,可信度会继续降低:他们是如何在程序完全不同的情况下比较编程和调试时间的?哦,他们问了任务完成的时间比预期时间长的频率!那“长期设计稳定度”是什么?哦,他们问了方法中有多少部分是从来不变的!问题都出在细节上:方法、样本、数据、分析。
粗略的凭经验来说,你可以完全忽略那些没有描述设置的研究,对那些设置的描述使你产生好奇疑问的研究,你也要保持怀疑的态度:这是哪个类型的研究?研究对象着手于哪些任务?在哪种工作环境下?研究对象是谁?数据是如何收集的?数据是如何验证的?主要的度量定义到何种精度?一份的实证研究报告能令人满意地回答所有这些问题。有意义并能让人理解的数据呈现
当你知道研究是如何构造的、数据是如何收集的时候,你需要进一步了解关于数据本身的信息。研究报告可能没有空间来发布原始数据,所以,即使是很小的研究也会通过统计学家所说的描述统计学来总结数据。级别、p值、自由度、剩余平方和、M参数、Σ、θ、β系数、ρ、τ等所有一切。这只是为了告诉你:“如果你敢质疑我的观点,我就会用我的显著性测试来砸你的脑袋。”可信的研究使用统计数据来解释和确保结果,差的研究使用它们来混淆视听(因为作者需要隐藏弱点)或恫吓他人(因为作者自己不能确定这些统计戏法的意义)。
6ES7223-3AD30-OXBO
在好的研究中,作者会用简单的语言解释他们所使用的每个统计推论。他们更喜欢使用易于理解的推论(如置信区间)而不是难以解释的推论(如p值和效能,用标准差归一的效应量)。他们会清晰地用如下语句解读每个结果:“这里也许有一些真正的差异”(正面结果),“这里似乎没有影响,或者只有很少的影响;我们看到的大部分是随机噪声”(负面结果),或者“还不清楚其意义”(空结果)。即使是后的那种结果,也很令人安心,因为它告诉你在看到数据时对其意义的不确定是有原因的,即使是统计推论也不能排除这个不确定性(至少不能通过这个来排除;也许有不同的分析可以带来指路明灯)。诚实地讨论局限性
任何实证研究的坚实汇报都需要有一个独立章节来讨论研究的局限性,通常以“对有效性的威胁”为标题。这个讨论提供关于以下问题的信息:“什么是通过这个研究所不能达到的”,“什么样的解读会有问题(构建效度)”,“研究中的什么东西可能或者已经出错了(内部效度)”,“要推广研究结果的限制是什么(外部效度)”。对一份好的研究报告来说,你通常已经意识到了这些问题,那这个章节就不会提供许多令人惊讶的信息。可信研究的作者能接受批判点的存在。如果一份研究试图消除所有批评的可能性,通常不是一个好的兆头。目前为止,你大概会同意达到高可信度绝非易事。然而,这并不意味着没有(或几乎没有)可靠的研究;只是可靠的研究总是很少。它们比我们想象中的得多,而且充满了我们不喜欢的“如果”、“当”和众多假设。在这样的情况下抱怨是没有意义的;这只是我们所生存和创造(就技术而言)的复杂世界所造成的不可规避的结果。如果我们足够耐心,并且能对我们已经发现的东西感到高兴的话,那这就不是一个问题。
我们认为,真正的问题在于:虽然工程师和科学家们很理解复杂性,也很重视复杂性及其带来的工作量,而且还能对它表示敬畏,但是我们整体的社会和文化并不是这样。我们被许多壮观的事物和景象所包围,所以不再把小新闻当做新闻。我们很难去留意那些由50个单词组成的未经扭曲的、错综复杂的研究结论。