西门子S120上海一级总代理
西门子S120上海一级总代理
浔之漫智控技术(上海)有限公司(xzm-wqy-shqw)
是中国西门子的佳合作伙伴,公司主要从事工业自动化产品的集成,销售和维修,是全国的自动化设备公司之一。
公司坐落于中国城市上海市,我们真诚的希望在器件的销售和工程项目承接、系统开发上能和贵司开展多方面合作。
以下是我司主要代理西门子产品,欢迎您来电来函咨询,我们将为您提供优惠的价格及快捷细致的服务!
系统安全工程是一项复杂的系统工程,需要运用系统工程的思想和方法,系统地分析信息系统存在的安全漏洞、风险、事件、损失、控制方法及效果之间复杂的对应关系,对信息系统的安全性进行分析与评价,以期建立一个有效的安全防御体系,而不是简单的安全产品堆砌。
确切地说,系统安全工程是系统的安全性问题而不仅是软件产品的安全性问题,是一种普适性的信息系统安全工程理论与实践方法,可以用于构建各种系统安全防御体系。系统安全工程可以在系统生命周期的不同阶段对安全问题提供指导,例如,对于已经发布运行的软件,可以采用系统测试、风险评估与控制等方法构建安全防御体系;而对于尚待开发的系统,也可以应用系统安全工程的思想方法来tigao目标系统的安全性。这是一项具有挑战性的工作,也是本书的出发点。
(3)软件安全开发
漏洞是引发信息安全事件的根源,而软件漏洞又是在软件开发的整个生命周期中引入的。软件生命周期包括需求分析、可行性分析、总体描述、系统设计、编码、调试和测试、验收与运行、维护升级、废弃等多个阶段,每个阶段都要定义、审查并形成文档以供交流或备查,以此来tigao软件的质量。虽然此类流程严格规对较少,尤其在软件构造理论与方法、构造过程、体系结构和运行环境等方面,没有建立相应的安全支撑机制,使得软件在规模增大以后,安全性问题越来越突出。
漏洞是引发信息安全事件产生的根源,软件漏洞尤其如此。恶意代码通常也是针对漏洞而编写出来的,软件侵权的成功往往跟软件漏洞也有密切的关系。因此,软件安全防护围绕漏洞消除展开,目前有两种基本方法。
1)采用多种检测、分析及挖掘技术对安全错误或是安全漏洞进行发现、分析与评价,然后采取多种安全控制措施进行错误修复和风险控制,如传统的打补丁、防病毒、防火墙、入侵检测和应急响应等。
这种将安全保障措施置于软件发布运行之时是当前普遍采用的方法。历史经验证明,该方法在时间和经济上投入产出比低,信息系统的安全状况很难得到有效改善。本章前面对于当前软件安全问题的现状分析表明了这点。传统的网络安信息安软件在网络空间信息系统的运行、危险控制及关键安全功能实现等方面正发挥着越来越重要的作用,成为系统安全保障、避免重大人员伤亡和财产损失的一个重要环节。
西门子S120上海一级总代理
信息安全保障是建立在传统的系统工程、质量管理和项目管理等基础之上的,广义的信息安全保障涉及信息系统和信息系统安全保障领域所特定的技术知识及工程管理,它是基于对信息系统安全保障需求的发掘和对安全风险的理解,以经济、科学的方法来设计、开发和建设信息系统,以便能满足用户在安全保障方面的需求。
在信息安全保障体系的建设中,首先进行科学规划,以用户身份认证和信息安全保密为基础,以网络边界防护和信息安全管理为辅助,为用户提供有效的、能为信息化建设提供安全保障的平台。通过在信息系统生命周期中对技术、过程、管理和人员进行保障,确保信息及信息系统的机密性、完整性、可用性、可核查性、真实性、抗抵赖性等,包括信息系统的保护、检测和恢复能力,以降低信息系统的脆弱性,减少风险。
降低系统脆弱性的西门子有效方法就是漏洞分析,因此,漏洞分析是信息安全保障的基础,在信息安全保障中占据核心地位。整个信息安全保障模型是一个以风险和策略为基础,包含保证对象、生命周期和信息特征三个方面的模型。主要特点是以安全概念和关系为基础,强调信息系统安全保障的持续发展的动态安全模型,强调信息系统安全保障的要求和保证概念,通过风险和策略基础、生命周期和保证层面,从而使信息系统安全保障实现信息技术安全的基本原则,达到保障组织结构执行使命的根本目标。确保软件安全是信息安全保障的主要内容。全已经进入网络空间安全阶段,这已成为共识。网络空间的安全问题得到的普遍重视。
网络空间(Cyberspace)不再只包含传统互联网所依托的各类电子设备,还包含重要的基础设施,以及各类应用和数据信息,人也是构成网络空间的一个重要元素。
网络空间安全(CyberSecurity)不仅关注传统信息安全研究的信息的保密性、完整性和可用性,同时还关注构成网络空间的基础设施的安全和可信,以及网络对现实社会安全的影响。全防护方法通常是根据网络的拓扑情况,以手动方式在安全域边界串联或旁路部署安全设备,对进出安全域的liuliang进行监控。如果将这种与接入模式、部署方式紧密耦合的防护方法沿用到复杂的网络环境(如物理与虚拟网络共存的数据中心)中,会存在诸多不适应性,例如,安全设备部署过程繁复;不能区别处理流经的软件定义威胁模型:对网络liuliang、网络行为和安全事件等信息进行自动化的采集、分析和挖掘,实现对未知的威胁甚至是一些安全威胁的实时分析和建模,之后自动用建模结果指导liuliang定义,实现一种动态、闭环的安全防护。
软件定义安全并不代表不再需要一些专门的信息安全硬件,这些仍然是必不可少的,只不过就像软件定义的网络一样,只是将价值和智能化转移到软件当中而己。
SDN和由此基础上发展起来的SDS,其基本思想都是不依赖于硬件设备,通过软件来实现系统的安全性,特别是可控性保障。从本质上说,软件安全关注的是实现软件产品安全性的全面的方法,而软件定义安全是实现分布式系统安全liuliang;安全防护范围僵化;安全设备成为单一故障点。越大,导致软件的开发、集成和维护工作越来越复杂,目前的可信软件构造与运行保障技术、可信性度量与评测方法严重缺出了挑战。需要强调的是,要达到软件可信的目标,需要对软件系统开发的整个生命周期,包括需求分析、可信算法设计、软件设计与实现、测试与验证、运行维护等阶段进行全面、统一的研究。乏,使得软件产品在推出时就含有很多已知或未知的缺陷,对软件系统的安全可靠运行构成了不同程度的威胁。另一方面,软件的开发环境和运行环境已经从传统的封闭、静态环境发展为开放、动态、多变的互联网环境。网络交互、共享和协同带来了很多“不可信”因素,网络上对信息的滥用和恶搞,使得可信问题变得更加突出。互联网环境中计算实体的行为具有不可控性和不确定性,这种状况既对传统的软件开发方法和技术提出了重要挑战,也对软件运行时刻的可信保障提出了严峻要求。
目前的可信软件研究是在软件正确性、可靠性、安全性和生存性等基础上发展起来的,软件形式化理论和验证技术、可靠性工程、网络信息安全等领域均有针对若干可信属性的研究。但是软件可信性不是正确性、可靠性、安全性和生存性等性质的简单相加,可信软件研究也不是对已有的各种软件属性研究进行简单的综合。首先,由于软件系统越来越复杂,软件可信意味着软件行为可信、环境可信和使用可信等不同层次的可信要求,而局部的可信并不一定导致全局的可信。系统的可信性属于涌现类的性质,如何从整体上度量、获得并保证可信性将是非常困难的;其次,不同可信属性之间可能彼此有冲突,并且不同层次之间也可能会有冲突,如何西门子优化地协调与取舍也是一个关键问题;第三,当软件可信性成为研究目标之后,必然要针对“可信”性质建立分析、构造、度量、评价体系,使得可信性能够在软件生产活动中被有效地跟踪控制和验证实现。这也对现有的计算理论与技术体系提统的安全、数据库管理系统的安全等,网络协议安全、网络软件安全和网络数据交换与传输安全等。这些安全机制确保信息系统的各个组成部分各自安全地运行以提供确定的服务,并对各自控制范围的用户数据信息进行安全保护,确保其达到确定的保密性、完整性和可用性目标。安全。而为了实现应用软件系统的安全,除了在应用软件系统中实现必要的安全功能外,大量的是需要支持其运行的计算机平台和网络平台的安全作为支持和保证,也就是组成信息系统是指提供一种合理的确信级别,确信根据软件需求,软件执行了正确的、可预期的功能,同时保证软件不被直接攻击或植入恶意代码。2004年美国第二届国家软件峰会所确定的国家软件战略中认为,软件保障目前包括4个核心服务,即软件的安全性、保险性、可靠性和生存性。规定条件下,在规定的时间内软件不引起系统失效的概率。该概率是系统输入和系统使用的函数,也是软件中存在的缺陷的函数。系统输入将确定是否会遇到已存在的缺陷(如果缺陷存在的话)。
在规定的时间周期内所述条件下程序执行所要求的功能的能力。